Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617350

RESUMO

Signaling through the platelet-derived growth factor receptor alpha (PDGFRa) plays a critical role in craniofacial development, as mutations in PDGFRA are associated with cleft lip/palate in humans and Pdgfra mutant mouse models display varying degrees of facial clefting. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during skeletal development in the mouse. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRa signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting, due to defects in proliferation and survival of cranial neural crest cells, and widespread alternative RNA splicing (AS) changes. Here, we sought to determine the molecular mechanisms by which Srsf3 activity is regulated downstream of PDGFRa signaling to control AS of transcripts necessary for craniofacial development. We demonstrated via enhanced UV-crosslinking and immunoprecipitation (eCLIP) of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. Moreover, we found that the subset of transcripts that are bound by Srsf3 and undergo AS upon PDGFRα signaling commonly encode regulators of PI3K signaling and early endosomal trafficking. Functional validation studies further confirmed that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.

2.
Environ Sci Technol ; 57(41): 15336-15347, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37647613

RESUMO

The Inflation Reduction Act (IRA) in the United States provides unprecedented incentives for deploying low-carbon hydrogen and liquid fuels, among other low-greenhouse gas (GHG) emissions technologies. To better understand the prospective competitiveness of low-carbon or negative-carbon hydrogen and liquid fuels under the IRA in the early 2030s, we examined the impacts of the IRA provisions on the costs of producing hydrogen and synthetic liquid fuel made from natural gas, electricity, short-cycle biomass (agricultural residues), and corn-derived ethanol. We determined that, with IRA credits (45V or 45Q) but excluding the incentives provided by other national or state policies, hydrogen produced by electrolysis using carbon-free electricity (green H2) and by natural gas reforming with carbon capture and storage (CCS) (blue H2) is cost-competitive with the carbon-intensive benchmark gray H2, which is produced by steam methane reforming. Biomass-derived H2 with or without CCS is not cost-competitive under the current IRA provisions. However, if the IRA allowed biomass gasification with CCS to claim a 45V credit for carbon-neutral H2 and a 45Q credit for negative biogenic CO2 emissions, this pathway would be less costly than gray H2. The IRA credit for clean fuels (45Z), currently stipulated to end in 2027, would need to be extended or similar policy support would need to be provided by other national or state policies in order for clean synthetic liquid fuel to be cost-competitive with petroleum-derived liquid fuels. The levelized IRA subsidies per unit of CO2 mitigated for all of the hydrogen and synthetic liquid fuel production pathways, except for electricity-derived synthetic liquid fuel, range from $65-$384/t of CO2. These values are within or below the range of the U.S. federal government's estimates of the social cost of carbon (SCC) in the 2030-2040 time frame.

3.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36794954

RESUMO

Taste buds on the tongue contain taste receptor cells (TRCs) that detect sweet, sour, salty, umami and bitter stimuli. Like non-taste lingual epithelium, TRCs are renewed from basal keratinocytes, many of which express the transcription factor SOX2. Genetic lineage tracing has shown that SOX2+ lingual progenitors give rise to both taste and non-taste lingual epithelium in the posterior circumvallate taste papilla (CVP) of mice. However, SOX2 is variably expressed among CVP epithelial cells, suggesting that their progenitor potential may vary. Using transcriptome analysis and organoid technology, we show that cells expressing SOX2 at higher levels are taste-competent progenitors that give rise to organoids comprising both TRCs and lingual epithelium. Conversely, organoids derived from progenitors that express SOX2 at lower levels are composed entirely of non-taste cells. Hedgehog and WNT/ß-catenin are required for taste homeostasis in adult mice. However, manipulation of hedgehog signaling in organoids has no impact on TRC differentiation or progenitor proliferation. By contrast, WNT/ß-catenin promotes TRC differentiation in vitro in organoids derived from higher but not low SOX2+ expressing progenitors.


Assuntos
Papilas Gustativas , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Língua/metabolismo
4.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234806

RESUMO

The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with one another by binding to growth factors at the plasma membrane and activating intracellular signaling pathways to elicit responses such as migration, proliferation, survival and differentiation. The PDGFR family consists of two receptors, PDGFRα and PDGFRß, that dimerize to form PDGFRα homodimers, PDGFRα/ß heterodimers and PDGFRß homodimers. Here, we overcame prior technical limitations in visualizing and purifying PDGFRα/ß heterodimers by generating a cell line stably expressing C-terminal fusions of PDGFRα and PDGFRß with bimolecular fluorescence complementation fragments corresponding to the N-terminal and C-terminal regions of the Venus fluorescent protein, respectively. We found that these receptors heterodimerize relatively quickly in response to PDGF-BB ligand treatment, with a peak of receptor autophosphorylation following 5 minutes of ligand stimulation. Moreover, we demonstrated that PDGFRα/ß heterodimers are rapidly internalized into early endosomes, particularly signaling endosomes, where they dwell for extended lengths of time. We showed that PDGFRα/ß heterodimer activation does not induce downstream phosphorylation of ERK1/2 and significantly inhibits cell proliferation. Further, we characterized the PDGFR dimer-specific interactome and identified MYO1D as a novel protein that preferentially binds PDGFRα/ß heterodimers. We demonstrated that knockdown of MYO1D leads to retention of PDGFRα/ß heterodimers at the plasma membrane, resulting in increased phosphorylation of ERK1/2 and increased cell proliferation. Collectively, our findings impart valuable insight into the molecular mechanisms by which specificity is introduced downstream of PDGFR activation to differentially propagate signaling and generate distinct cellular responses.

5.
Brain Topogr ; 35(4): 416-430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821542

RESUMO

Visual cues are especially vital for hearing impaired individuals such as cochlear implant (CI) users to understand speech in noise. Functional Near Infrared Spectroscopy (fNIRS) is a light-based imaging technology that is ideally suited for measuring the brain activity of CI users due to its compatibility with both the ferromagnetic and electrical components of these implants. In a preliminary step toward better elucidating the behavioral and neural correlates of audiovisual (AV) speech integration in CI users, we designed a speech-in-noise task and measured the extent to which 24 normal hearing individuals could integrate the audio of spoken monosyllabic words with the corresponding visual signals of a female speaker. In our behavioral task, we found that audiovisual pairings provided average improvements of 103% and 197% over auditory-alone listening conditions in -6 and -9 dB signal-to-noise ratios consisting of multi-talker background noise. In an fNIRS task using similar stimuli, we measured activity during auditory-only listening, visual-only lipreading, and AV listening conditions. We identified cortical activity in all three conditions over regions of middle and superior temporal cortex typically associated with speech processing and audiovisual integration. In addition, three channels active during the lipreading condition showed uncorrected correlations associated with behavioral measures of audiovisual gain as well as with the McGurk effect. Further work focusing primarily on the regions of interest identified in this study could test how AV speech integration may differ for CI users who rely on this mechanism for daily communication.


Assuntos
Implantes Cocleares , Percepção da Fala , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Fala , Percepção Visual
6.
iScience ; 25(1): 103695, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036878

RESUMO

A growing number of governments are pledging to achieve net-zero greenhouse gas emissions by mid-century. Despite such ambitions, realized emissions reductions continue to fall alarmingly short of modeled energy transition pathways for achieving net-zero. This gap is largely a result of the difficulty of realistically modeling all the techno-economic and sociopolitical capabilities that are required to deliver actual emissions reductions. This limitation of models suggests the need for an energy-systems analytical framework that goes well beyond energy-system modeling in order to close the gap between ambition and reality. Toward that end, we propose the Emissions-Sustainability-Governance-Operation (ESGO) framework for structured assessment and transparent communication of national capabilities and realization. We illustrate the critical role of energy modeling in ESGO using recent net-zero modeling studies for the world's two largest emitters, China and the United States. This illustration leads to recommendations for improvements to energy-system modeling to enable more productive ESGO implementation.

7.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160573

RESUMO

In taste buds, Type I cells represent the majority of cells (50-60%) and primarily have a glial-like function in taste buds. However, recent studies suggest that they have additional sensory and signaling functions including amiloride-sensitive salt transduction, oxytocin modulation of taste, and substance P mediated GABA release. Nonetheless, the overall function of Type I cells in transduction and signaling remains unclear, primarily because of the lack of a reliable reporter for this cell type. GAD65 expression is specific to Type I taste cells and GAD65 has been used as a Cre driver to study Type I cells in salt taste transduction. To test the specificity of transgene-driven expression, we crossed GAD65Cre mice with floxed tdTomato and Channelrhodopsin (ChR2) lines and examined the progeny with immunochemistry, chorda tympani recording, and calcium imaging. We report that while many tdTomato+ taste cells express NTPDase2, a specific marker of Type I cells, we see some expression of tdTomato in both Gustducin and SNAP25-positive taste cells. We also see ChR2 in cells just outside the fungiform taste buds. Chorda tympani recordings in the GAD65Cre/ChR2 mice show large responses to blue light. Furthermore, several isolated tdTomato-positive taste cells responded to KCl depolarization with increases in intracellular calcium, indicating the presence of voltage-gated calcium channels. Taken together, these data suggest that GAD65Cre mice drive expression in multiple taste cell types and thus cannot be considered a reliable reporter of Type I cell function.


Assuntos
Papilas Gustativas , Paladar , Amilorida , Animais , Channelrhodopsins , Nervo da Corda do Tímpano , Camundongos
8.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34184034

RESUMO

Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) is crucial for mammalian craniofacial development, although the mechanisms by which the activity of downstream intracellular effectors is regulated to mediate gene expression changes have not been defined. We find that the RNA-binding protein Srsf3 is phosphorylated at Akt consensus sites downstream of PI3K-mediated PDGFRα signaling in mouse palatal mesenchyme cells, leading to its nuclear translocation. We further demonstrate that ablation of Srsf3 in the mouse neural crest lineage leads to facial clefting due to defective cranial neural crest cell proliferation and survival. Finally, we show that Srsf3 regulates the alternative RNA splicing of transcripts encoding protein kinases in the mouse facial process mesenchyme to regulate PDGFRα-dependent intracellular signaling. Collectively, our findings reveal that alternative RNA splicing is an important mechanism of gene expression regulation downstream of PI3K/Akt-mediated PDGFRα signaling in the facial mesenchyme and identify Srsf3 as a critical regulator of craniofacial development.


Assuntos
Processamento Alternativo , Mesoderma/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ligantes , Masculino , Camundongos , Camundongos Knockout , Crista Neural/embriologia , Crista Neural/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética
9.
Elife ; 102021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34009125

RESUMO

Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco/metabolismo , Papilas Gustativas/metabolismo , Animais , Animais Recém-Nascidos , Adesão Celular , Linhagem da Célula , Movimento Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Masculino , Transdução de Sinais , Paladar , Papilas Gustativas/citologia , Transcriptoma
10.
BMC Genomics ; 22(1): 224, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781205

RESUMO

BACKGROUND: Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. RESULTS: Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. CONCLUSION: Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.


Assuntos
Neurônios Receptores Olfatórios , Canais de Cátion TRPM , Viroses , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa Olfatória , Canais de Cátion TRPM/genética
11.
Dev Cogn Neurosci ; 47: 100901, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360832

RESUMO

Word learning is a significant milestone in language acquisition. The second year of life marks a period of dramatic advances in infants' expressive and receptive word-processing abilities. Studies show that in adulthood, language processing is left-hemisphere dominant. However, adults learning a second language activate right-hemisphere brain functions. In infancy, acquisition of a first language involves recruitment of bilateral brain networks, and strong left-hemisphere dominance emerges by the third year. In the current study we focus on 14-month-old infants in the earliest stages of word learning using infant magnetoencephalography (MEG) brain imagining to characterize neural activity in response to familiar and unfamiliar words. Specifically, we examine the relationship between right-hemisphere brain responses and prospective measures of vocabulary growth. As expected, MEG source modeling revealed a broadly distributed network in frontal, temporal and parietal cortex that distinguished word classes between 150-900 ms after word onset. Importantly, brain activity in the right frontal cortex in response to familiar words was highly correlated with vocabulary growth at 18, 21, 24, and 27 months. Specifically, higher activation to familiar words in the 150-300 ms interval was associated with faster vocabulary growth, reflecting processing efficiency, whereas higher activation to familiar words in the 600-900 ms interval was associated with slower vocabulary growth, reflecting cognitive effort. These findings inform research and theory on the involvement of right frontal cortex in specific cognitive processes and individual differences related to attention that may play an important role in the development of left-lateralized word processing.


Assuntos
Idioma , Magnetoencefalografia , Mapeamento Encefálico , Pré-Escolar , Humanos , Lactente , Estudos Prospectivos , Vocabulário
12.
Front Cell Infect Microbiol ; 11: 798246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096646

RESUMO

Otitis media (OM) is a leading cause of childhood hearing loss. Variants in FUT2, which encodes alpha-(1,2)-fucosyltransferase, were identified to increase susceptibility to OM, potentially through shifts in the middle ear (ME) or nasopharyngeal (NP) microbiotas as mediated by transcriptional changes. Greater knowledge of differences in relative abundance of otopathogens in carriers of pathogenic variants can help determine risk for OM in patients. In order to determine the downstream effects of FUT2 variation, we examined gene expression in relation to carriage of a common pathogenic FUT2 c.461G>A (p.Trp154*) variant using RNA-sequence data from saliva samples from 28 patients with OM. Differential gene expression was also examined in bulk mRNA and single-cell RNA-sequence data from wildtype mouse ME mucosa after inoculation with non-typeable Haemophilus influenzae (NTHi). In addition, microbiotas were profiled from ME and NP samples of 65 OM patients using 16S rRNA gene sequencing. In human carriers of the FUT2 variant, FN1, KMT2D, MUC16 and NBPF20 were downregulated while MTAP was upregulated. Post-infectious expression in the mouse ME recapitulated these transcriptional differences, with the exception of Fn1 upregulation after NTHi-inoculation. In the NP, Candidate Division TM7 was associated with wildtype genotype (FDR-adj-p=0.009). Overall, the FUT2 c.461G>A variant was associated with transcriptional changes in processes related to response to infection and with increased load of potential otopathogens in the ME and decreased commensals in the NP. These findings provide increased understanding of how FUT2 variants influence gene transcription and the mucosal microbiota, and thus contribute to the pathology of OM.


Assuntos
Fucosiltransferases , Infecções por Haemophilus , Microbiota , Nasofaringe , Otite Média , Animais , Orelha Média , Fucosiltransferases/genética , Infecções por Haemophilus/metabolismo , Haemophilus influenzae/genética , Humanos , Camundongos , Microbiota/genética , Nasofaringe/microbiologia , Otite Média/genética , Otite Média/metabolismo , RNA Ribossômico 16S/genética
13.
Sci Rep ; 10(1): 15035, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929111

RESUMO

Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial α-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.


Assuntos
Mutação de Sentido Incorreto , Otite Média/genética , Plasminogênio/genética , Animais , Orelha Média/metabolismo , Orelha Média/microbiologia , Feminino , Genômica/métodos , Humanos , Masculino , Camundongos , Microbiota , Otite Média/microbiologia , Otite Média/patologia , Linhagem , Plasminogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Saliva/metabolismo
14.
Neuron ; 107(2): 219-233, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32640192

RESUMO

The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.


Assuntos
Betacoronavirus , Infecções por Coronavirus/fisiopatologia , Transtornos do Olfato/fisiopatologia , Pneumonia Viral/fisiopatologia , Olfato/fisiologia , Distúrbios do Paladar/fisiopatologia , Paladar/fisiologia , Animais , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/virologia , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/virologia , Mucosa Olfatória/fisiopatologia , Mucosa Olfatória/virologia , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Distúrbios do Paladar/epidemiologia , Distúrbios do Paladar/virologia
15.
bioRxiv ; 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32511400

RESUMO

BACKGROUND: Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. RESULTS: Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. CONCLUSION: Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.

16.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988217

RESUMO

The Skn-1a transcription factor (Pou2f3) is required for Type II taste cell differentiation in taste buds. Taste buds in Skn-1a-/- mice lack Type II taste cells but have a concomitant expansion of Type III cells, providing an ideal model to determine the relative role of taste cell types in response specificity. We confirmed that chorda tympani responses to sweet, bitter, and umami stimuli were greatly reduced in the knock-outs (KOs) compared with wild-type (WT) littermates. Skn-1a-/- mice also had reductions to NaCl that were partially amiloride-insensitive, suggesting that both Type II and Type III cells contribute to amiloride-insensitive salt detection in anterior tongue. We also confirmed that responses to sour stimuli are equivalent in the KOs, despite the large increase in the number of Type III taste cells. To examine their innervation, we crossed the Htr3a-GFP (5-HT3A-GFP) reporter mouse with the Skn-1a-/- mice and examined geniculate ganglion neurons for GFP expression and responses to 5-HT. We found no change in the number of 5-HT3A-expressing neurons with KO of Skn-1a Calcium imaging showed that only 5-HT3A-expressing neurons respond to exogenous 5-HT, while most neurons respond to ATP, similar to WT mice. Interestingly, despite loss of all Type II cells, the P2X3 antagonist AF353 blocked all chorda tympani responses. These data collectively raise questions pertaining the source of ATP signaling in the absence of Type II taste cells and whether the additional Type III cells are innervated by fibers that would have normally innervated Type II cells.


Assuntos
Papilas Gustativas , Animais , Nervo da Corda do Tímpano , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotransmissores , Paladar
17.
Chem Senses ; 44(9): 663-671, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31504289

RESUMO

Forkhead box protein J1 (FOXJ1), a member of the forkhead family transcription factors, is a transcriptional regulator of motile ciliogenesis. The nasal respiratory epithelium, but not olfactory epithelium, is lined with FOXJ1-expressing multiciliated epithelial cells with motile cilia. In a transgenic mouse where an enhanced green fluorescent protein (eGFP) transgene is driven by the human FOXJ1 promoter, robust eGFP expression is observed not only in the multiciliated cells of the respiratory epithelium but in a distinctive small subset of olfactory sensory neurons in the olfactory epithelium. These eGFP-positive cells lie at the extreme apical part of the neuronal layer and are most numerous in dorsal-medial regions of olfactory epithelium. Interestingly, we observed a corresponding small number of glomeruli in the olfactory bulb wherein eGFP-labeled axons terminate, suggesting that the population of eGFP+ receptor cells expresses a limited number of olfactory receptors. Similarly, a subset of vomeronasal sensory neurons expresses eGFP and is distributed throughout the full height of the vomeronasal sensory epithelium. In keeping with this broad distribution of labeled vomeronasal receptor cells, eGFP-labeled axons terminate in many glomeruli in both anterior and posterior portions of the accessory olfactory bulb. These findings suggest that Foxj1-driven eGFP marks a specific population of olfactory and vomeronasal sensory neurons, although neither receptor cell population possess motile cilia.


Assuntos
Fatores de Transcrição Forkhead/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Axônios/metabolismo , Cílios/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Mucosa Respiratória/metabolismo , Órgão Vomeronasal/metabolismo
18.
Chem Senses ; 44(7): 511-521, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31300812

RESUMO

Mucins are a key component of the surface mucus overlying airway epithelium. Given the different functions of the olfactory and respiratory epithelia, we hypothesized that mucins would be differentially expressed between these 2 areas. Secondarily, we evaluated for potential changes in mucin expression with radiation exposure, given the clinical observations of nasal dryness, altered mucus rheology, and smell loss in radiated patients. Immunofluorescence staining was performed to evaluate expression of mucins 1, 2, 5AC, and 5B in nasal respiratory and olfactory epithelia of control mice and 1 week after exposure to 8 Gy of radiation. Mucins 1, 5AC, and 5B exhibited differential expression patterns between olfactory and respiratory epithelium (RE) while mucin 2 showed no difference. In the olfactory epithelium (OE), mucin 1 was located in a lattice-like pattern around gaps corresponding to dendritic knobs of olfactory sensory neurons, whereas in RE it was intermittently expressed by surface goblet cells. Mucin 5AC was expressed by subepithelial glands in both epithelial types but to a higher degree in the OE. Mucin 5B was expressed by submucosal glands in OE and by surface epithelial cells in RE. At 1-week after exposure to single-dose 8 Gy of radiation, no qualitative effects were seen on mucin expression. Our findings demonstrate that murine OE and RE express mucins differently, and characteristic patterns of mucins 1, 5AC, and 5B can be used to define the underlying epithelium. Radiation (8 Gy) does not appear to affect mucin expression at 1 week. LEVEL OF EVIDENCE: N/A (Basic Science Research).IACUC-approved study [Protocol 200065].


Assuntos
Mucinas/biossíntese , Mucosa Nasal/metabolismo , Mucosa Respiratória/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucinas/análise , Mucosa Nasal/química , Mucosa Respiratória/química
19.
Chem Senses ; 44(7): 483-495, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31231752

RESUMO

Some bitter taste receptors (TAS2R gene products) are expressed in the human sinonasal cavity and may function to detect airborne irritants. The expression of all 25 human bitter taste receptors and their location within the upper airway is not yet clear. The aim of this study is to characterize the presence and distribution of TAS2R transcripts and solitary chemosensory cells (SCCs) in different locations of the human sinonasal cavity. Biopsies were obtained from human subjects at up to 4 different sinonasal anatomic sites. PCR, microarray, and qRT-PCR were used to examine gene transcript expression. The 25 human bitter taste receptors as well as the sweet/umami receptor subunit, TAS1R3, and canonical taste signaling effectors are expressed in sinonasal tissue. All 25 human bitter taste receptors are expressed in the human upper airway, and expression of these gene products was higher in the ethmoid sinus than nasal cavity locations. Fluorescent in situ hybridization demonstrates that epithelial TRPM5 and TAS2R38 are expressed in a rare cell population compared with multiciliated cells, and at times, consistent with SCC morphology. Secondary analysis of published human sinus single-cell RNAseq data did not uncover TAS2R or canonical taste transduction transcripts in multiciliated cells. These findings indicate that the sinus has higher expression of SCC markers than the nasal cavity in chronic rhinosinusitis patients, comprising a rare cell type. Biopsies obtained from the ethmoid sinus may serve as the best location for study of human upper airway taste receptors and SCCs.


Assuntos
Células Quimiorreceptoras/metabolismo , Cavidade Nasal/metabolismo , Receptores Acoplados a Proteínas G/genética , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo
20.
Hum Mutat ; 40(8): 1156-1171, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009165

RESUMO

A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.


Assuntos
Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Mutação , Otite Média/genética , Análise de Sequência de DNA/métodos , alfa-Macroglobulinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Finlândia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Filipinas , Análise de Sequência de RNA , Transdução de Sinais , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...